

TABLE OF CONTENTS

H.

CONTENTS	PAGE
INTRODUCTION	2
TECHNICAL OVERVIEW	2
Technical Discussion	3
Design Example	4
Specification Definitions	4
Defining Multiplier Terms	5
Typical Block Diagrams	5
Specifications and Typical Values	7
General Specifications	7
Percentage Bandwidth, Rejection	
and Size	7
Frequency Multipliers	8
APPLICATION NOTES	
Common Applications	8
SHORT-FORM LISTING	
Passive Frequency Doublers	9
Active Frequency Doublers	10
Active Frequency Triplers	11
Higher-Order Active Multipliers	12
DETAILED DATA SHEETS	
Passive Frequency Doublers	
MX2M020040	15
MX2M040080	16
MX2M080160	17
MX2M130260	18
	19
MX2M010060	20
MX2M030180	22
MX2M060260	23
	-

CONTENTS F	PAGE
Active Frequency Doublers	
MAX2M020040	24
MAX2M040080	25
MAX2M080160	26
MAX2M130260	27
MAX2M200400	28
MAX2M260400	29
MAX2M260400 (Waveguide WR28 Output)	30
MAX2M300500	31
	32
	აა 24
MAX2M060260	34
HIGHER-ORDER ACTIVE MULTIPLIER ASSEMI	BLIES
X 3	36
X 4	37
X 5	39
X 5 (Hermetic Product)	40
X 6	41
X 16	42
X 32	44
OUTLINE DRAWINGS	
Passive Multipliers	45
Active Multipliers	47
GENERAL INFORMATION	50
vvarranty	52
Fax-Back Page	53
Additional Products	54

INTRODUCTION

This catalog is intended to provide an overview of MITEQ's passive and active multiplier capabilities. Within this catalog you will find a variety of standard designs which will meet typical applications. However, MITEQ maintains dedicated engineering resources to modify these standard designs in support of custom-generated specifications that are typically required in stringent system applications. These critical requirements often require high spectral purity. MITEQ can obtain high levels of fundamental and spurious signal

suppression as required in many frequency source applications, by employing special filter technologies.

In addition to custom-filter designs, MITEQ also has advanced amplifier technologies which, when combined with balanced multiplier designs, offer high performance active multipliers, especially in the areas of shaped frequency response and desired output levels.

TECHNICAL OVERVIEW

Most of MITEQ's frequency multiplier designs perform to specific customer requirements and can easily be categorized into standard products. Parameters such as frequency range, bandwidth, spurious rejection and multiplication ratios are normally determined by specific system requirements. These requirements, in turn, translate into customdesigned filter and amplifier specifications at the multiplier design level.

In most frequency multiplier designs, the multiplier output contains, besides the desired harmonic output, unwanted signals. These unwanted signals consist of the fundamental input signal leakage, and lower-order and higher-order harmonics generated in the multiplier. Quite often, with odd-order multipliers, the undesired signals are higher in level than the desired signal. In even-order multipliers, the undesired outputs are normally 10 to 20 dB below the desired output. Thus, the output signals can be amplified before the output is filtered. This is not possible with odd-order multipliers because the unwanted signals will cause the amplifier to saturate and suppress the desired output. The easiest to characterize as standard products are the frequency doublers, because of their wide bandwidth and relatively high rejection to input harmonics.

For these reasons, the frequency doubler section of the product line offers more standard models than the higherorder frequency multipliers.

Definitions of key performance parameters vary from manufacturer to manufacturer. Some of the variations are minor, while others can lead to misinterpretations of specifications. In order to avoid that problem and facilitate the use of this catalog, we have supplied a technical discussion for our series of passive and active multipliers.

TECHNICAL DISCUSSION

MULTIPLIER LOSSES

MITEQ's multipliers are formed by cascading a passive multiplier with a bandpass filter and an active device, such as an amplifier.

The basic multiplier losses of MITEQ's passive multipliers are listed below;

times two (X 2):	12 dB typical
times three (X 3):	15 dB typical
times four (X 4):	22 dB typical
times five (X 5):	23 dB typical

Multipliers of higher orders are formed by cascading these basic blocks. The most common higher-order multiplier used for MITEQ's systems applications is the times six, which is formed with the cascade of times two and times three. MITEQ manufactures C-band through Ku-band multipliers with built-in comb bandpass filters, MMIC amplifiers and higher-order assemblies that include various combinations of even- and odd-harmonic multipliers.

PHASE NOISE

MITEQ multipliers add phase noise to a lower frequency source by approximately $20 \times \log[N] + 3 dB$, where N is the multiplication factor. If spurious products are present on an incoming signal, they increase in level by this factor. Below is a visual representation of this phenomenon;

The phase noise contribution of the tripler is 12.50 dB;

The method of measuring the phase noise contribution is referred to as a residual phase noise measurement and requires three multipliers (three measurements with two multipliers each), so that the source noise is cancelled. At present, all of our multipliers have not been thoroughly characterized for phase noise contribution.

SPURIOUS AND HARMONIC REJECTION

The concepts of harmonic rejection and spurious rejection are very important in the manufacture of multipliers. An important tool in the design process relates to the spurious-free bandwidth, which can be mathematically calculated from the relation;

[N + 1] / N < = [upper frequency limit/lower frequency limit] where N is the multiplication factor.

For a tripler, this ratio becomes 4/3 = 1.333. A tripler whose output is 4 to 8 GHz wide has in-band spurious outputs that are not filtered because 8/4 = 2, which exceeds the spurious-free bandwidth ratio.

With regard to spurious rejection, it makes a difference over what output region the rejection is required. Generally, MITEQ produces multipliers with -65 dBc minimum spurious rejection, not only in the output passband, but also outside the desired passband from (1 to 18 GHz). Spurious outputs take three basic forms.

- CASE 1. The spurs are not harmonically related to the input, and are called nonharmonically-related spurs [not related to N at all].
- CASE 2. The spurs are related somehow to the input, or multiples of it, and are called harmonically-related spurious. [N + 1, N 1, N + 2, etc.].
- CASE 3. The spurs are related to multiples of the output and are referred to as output harmonics [N, 3N, 4N, etc.].

At MITEQ, we refer to the first two cases under the general term spurious rejection, and to case three by the term output harmonics. Rejection to output harmonics for the vast majority of MITEQ multipliers lies between -20 and -15 dBc. The reason for this is because those multipliers that require amplification, usually employ an amplifier that is run in a saturated mode to minimize output power variations versus temperature.

This leads to a key design concept about properly assessing the choice of multiplication factor, and more importantly, how much rejection is required to meet your overall system requirements. The multiplier can be used as part of a synthesizer or source that feeds one port of a mixer. When the spurs of the multiplier enter the mixer, they mix with the RF and its harmonics to produce various unwanted signals that cannot be filtered in the IF passband.

DESIGN EXAMPLE

Your system requires a multiplier output from 8.6 to 10.5 GHz. Due to the available input frequencies, it is determined that the multiplication factor is six times. This is best accomplished by cascading a times three and a times two multiplier.

The input required for the tripler will be 1433 to 1750 MHz.

Multiples of the input, present at the output are:

- X 2 2866 3500 MHz
- X 3 4299 5250 MHz [desired]
- X 4 5732 7000 MHz
- X 5 7165 8750 MHz etc...

Suppose that the times five spectral component at the output is not suppressed properly. If your system specification is -70 dBc spurious, for example, and the N + 2 product is only suppressed by -58 dBc, the times six chain will not meet specification, because the next doubler will not provide any additional suppression. This product is an in-band spurious because anything from 8600 to 10500 MHz is in-band.

Suppose, next, that the N + 1 product of the tripler is not suppressed -70 dBc. The desired input to the doubler is 4299 to 5250 MHz, but we also have an input from 5732 to 7000 MHz that was not adequately suppressed. Therefore, we will observe an undesired output from the doubler at the following frequency;

N + 1 5732 – 7000 MHz N 4299 – 5250 MHz, the difference product is 1433 – 1750 MHz

Since our desired output is 8600 to 10500 MHz, the difference product maps into the region (8600 to 10500 MHz) + (1433 to 1750 MHz) and the result is 10033 to 12250 MHz, which is an undesired product, from at least the 10033 to 10500 MHz region of the desired output passband.

The point of this example is to show that when a multiplier system is designed from cascaded multipliers, potential problems exist if you buy the individual multipliers separately from MITEQ, and do not take into account all the multiples and their products formed at various stages. MITEQ provides custom-designed higher-order multipliers that will not suffer from these effects.

SPECIFICATION DEFINITIONS

PASSIVE MULTIPLIERS

CONVERSION LOSS (also known as multiplier loss)

This is the attenuation in dB between the input level and the output level.

HARMONIC REJECTION

The difference in dB between the desired harmonic and the unwanted harmonic as viewed at the multiplier output port. When the unwanted harmonic is the fundamental itself, then the difference is the fundamental rejection.

ACTIVE MULTIPLIERS

CONVERSION GAIN

The net increase in power between the fundamental input signal and the desired output. It is usually expressed as a positive ratio in dB.

SPURIOUS REJECTION

The difference in dB between the desired output harmonic and any other harmonic as viewed at the multiplier's output. The spurs can be multiples of the input frequency.

OUTPUT HARMONIC REJECTION

The difference in dB between the desired output and harmonics of the output frequency.

COMMON DEFINITIONS FOR BOTH PASSIVE AND ACTIVE MULTIPLIERS

OUTPUT POWER FLATNESS

The maximum power variation in dB over a specified frequency and at a specific temperature.

INPUT POWER

The level in dBm as measured at the multiplier's input port.

OUTPUT POWER

The level in dBm as measured at the output port of the multiplier.

OPERATING TEMPERATURE

The temperature range at which the device meets the specified electrical parameters. The temperature is defined as the base plate temperature of the device.

DEFINING MULTIPLIER TERMS

Input harmonics feeding multiplier = 2M, 3M Spurious feeding multiplier = Q, R

Output harmonics from multiplier = 2N, 3N Input harmonic rejection (products generated in the multiplier) = N + 1, N - 1 related to the input Spurious rejection = Y, Z

TYPICAL BLOCK DIAGRAMS

The basic use of frequency multipliers is to extend the output frequency range or bandwidth of a source by multiplying that frequency by a given multiplication factor, i.e., twice the fundamental of a 5 to 10 GHz source would yield a 10 to 20 GHz output. The following block diagrams represent but a small sampling of the uses for both passive and active multipliers.

PASSIVE MULTIPLIERS

SPECIFICATIONS AND TYPICAL VALUES

One very common problem MITEQ's customers face when purchasing multipliers is not knowing what specifications are practically realizable, and also not appreciating that overspecification causes large, bulky and expensive products. This can be overcome by using some practical values established here as a reference:

SPECIFICATION

Multiplication factor Phase noise contribution Output bandwidth Input power Output power Output power flatness Spurious rejection Output harmonics Operating temperature Size

TYPICAL VALUE

Examine spurious-free bandwidth ratio 20 log [N] + 3 dB Examine spurious-free bandwidth ratio +10 dBm +10 dBm ±1.50 dB -65 dBc -15 dBc 0 to 50°C Depends on required rejection

GENERAL SPECIFICATIONS

MITEQ's standard frequency multipliers have been designed to meet the following environmental conditions:

Operating temperature	-30 to +75°C
Storage temperature	-40 to +85°C
Humidity	95% relative humidity, noncondensing
Vibration	7 Gs RMS, 50-5000 CPS, per MIL-STD-810B, Method 514, Procedure 5
Data curves are at 25°C	There will be some variation in the typical data shown as a function of temperature

PERCENTAGE BANDWIDTH, REJECTION AND SIZE

The last topic to address is perhaps the most complicated. It relates to having some feel for how large a multiplier will be in order to achieve proper spurious rejection. Two diagnostic tools used at MITEQ are presented here, which have played an important role in this regard;

Multiplier Percentage Bandwidth = [Output Bandwidth] / [Operating Frequency] MITEQ produces designs with 10 to 15 percent bandwidths.

Bandwidth Ratio = [Reject Frequency - Center Frequency] / [Output Bandwidth] Generally, the higher the number the better.

When the percentage bandwidth gets too large, and/or when the bandwidth ratio gets too small, the multiplier becomes difficult to produce and may become quite large, because the filtering requirements are forcing the number of filtering elements to increase. It is also true that the size is related to the operating frequency.

Since the filter is often the largest component of the multiplier, it is useful to know how many resonators are needed and how large your multiplier might be. MITEQ has engineering support available to help you get a feel for how large your multiplier might be. **Contact MITEQ at (631) 439-9413** to discuss the details about specifying the spurious rejection and size of your multiplier requirement for a cost-effective design.

FREQUENCY MULTIPLIERS

TYPICAL PERFORMANCE VS. INPUT POWER

COMMON APPLICATIONS

SATCOM PRODUCTS-COMMUNICATIONS RECEIVERS

Microwave front ends usually employ a phase-locked source, such as a frequency synthesizer which has extremely low phase-noise characteristics, especially for digital communications. The synthesizer uses a fundamental VCO which is locked to highly-stable crystal reference sources. The frequency limitation of many commercial VCOs and frequency dividers is 3500 MHz. A multiplier is employed to extend the synthesizer range.

RADAR RECEIVERS

Most high-quality radars employ frequency synthesizers which require frequency multipliers. The phase noise must be low to avoid clutter noise.

INSTRUMENTATION APPLICATIONS

Frequency synthesizers which require multipliers are found in the front end of many measuring instruments which require low phase-noise LOs. One example is a spectrum analyzer.

RADIO ASTRONOMY APPLICATIONS

Interferometers and radiometers require broadband frequency doublers for wideband receivers. Frequency synthesizers are used to generate millimeter-wave frequencies to make the measurements.

MILLIMETER-WAVE SOURCES

Millimeter-wave frequencies are used in research applications for atomic spectroscopy and for various communications and radars. A multiplier chain can be used to generate these frequencies from a lower frequency source.

FREQUENCY STANDARDS

Highly-stable frequency sources can be multiplied to produce microwave sources used to measure the effect of the atmosphere or rocket exhaust on microwave signals.

PASSIVE FREQUENCY DOUBLERS

MODEL	INPUT Frequency	INPUT POWER	OUTPUT Frequency	CONVERSION LOSS (dB)	HARMONIC Rejection Fund./odd	OUTLINE	OPTIONAL
NUMBER	(GHZ)	(dBm)	(GHZ)	(Typ./Max.)	(dBc, lyp.)	NUMBER	OUTLINE
			OCTAVE BA	NDWIDTH			
MX2.1020040	1 – 2	3 – 8	2 – 4	95/13	20 / 20	MX2A	
MX2M020040 *	1 – 2	8 – 12	2 - 4	9.5 / 13	20 / 20	MX2A	
MX2H020040	1 – 2	12 – 16	2 - 4	9.5 / 13	20 / 20	MX2A	
MX2V020040	1 – 2	16 – 20	2 - 4	9.5 / 13	20 / 20	MX2A	
MX2U020040	1 – 2	20 – 25	2 – 4	9.5 / 13	20 / 20	MX2A	
MX2J040080	2 – 4	3 – 8	4 – 8	11 / 13**	20 / 20	MX2B	MX2C
MX2M040080 *	2 – 4	8 – 12	4 – 8	11 / 13**	20 / 20	MX2B	MX2C
MX2H040080	2 – 4	12 – 16	4 – 8	11 / 13**	20 / 20	MX2B	MX2C
MX2V040080	2 – 4	16 – 20	4 – 8	11 / 13**	20 / 20	MX2B	MX2C
MX2U040080	2 – 4	20 – 25	4 – 8	11 / 13**	20 / 20	MX2B	MX2C
MX2J080160	4 – 8	3 – 8	8 – 16	11 / 13**	20 / 20	MX2B	MX2C
MX2M080160 *	4 – 8	8 – 12	8 – 16	11 / 13**	20 / 20	MX2B	MX2C
MX2H080160	4 – 8	12 – 16	8 – 16	11 / 13**	20 / 20	MX2B	MX2C
MX2V080160	4 – 8	16 – 20	8 – 16	11 / 13**	20 / 20	MX2B	MX2C
MX2U080160	4 – 8	20 – 25	8 – 16	11 / 13**	20 / 20	MX2B	MX2C
MX2J130260	6.5 – 13	3 – 8	13 – 26	11 / 13	20 / 20	MX2D	
MX2M130260 *	6.5 – 13	8 – 12	13 – 26	11 / 13	20 / 20	MX2D	
MX2H130260	6.5 – 13	12 – 16	13 – 26	11 / 13	20 / 20	MX2D	
MX2V130260	6.5 – 13	16 – 20	13 – 26	11 / 13	20 / 20	MX2D	
MX2U130260	6.5 – 13	20 – 25	13 – 26	11 / 13	20 / 20	MX2D	
MX2M260400 *	13 – 20	8 – 12	26 - 40	10 / 13	15 / 15	MX2E	
MX2V260400	13 – 20	16 – 20	26 - 40	10 / 13	15 / 15	MX2E	
** 15 dB for MY20							
	o dumie.						
		Ν					
		10		DAIUDWIDIN			
MX2J004010	0.02 - 0.5	3 – 8	0.04 - 1	10.5 / 13	25 / 25	MX2A	
MX2M004010 *	0.02 - 0.5	8 - 12	0.04 - 1	10.5 / 13	25 / 25	MX2A	
MX2H004010	0.02 - 0.5	12 - 16	0.04 - 1	10.5 / 13	25 / 25	MX2A	
MX21004010	0.02 - 0.5 0.02 - 0.5	10 - 20 20 - 25	0.04 - 1	10.5 / 13	25 / 25	MX2A	
WIX20004010	0.02 0.0	20 20	0.04	10.07 10	20720	WIX2/Y	
MX2J010060	0.5 – 3	3 – 8	1 – 6	10.5 / 15	15 / 20	MX2A	
MX2M010060 *	0.5 – 3	8 – 12	1 – 6	10.5 / 15	15 / 20	MX2A	
MX2H010060	0.5 – 3	12 - 16	1 - 6	10.5 / 15	15 / 20	MX2A	
MX2V010060	0.5 - 3	16 - 20	1-6	10.5 / 15	15 / 20	MX2A	
WIX20010000	0.5 - 5	20 - 25	1 - 0	10.57 15	15720	IVIAZA	
MX2J030180	1.5 – 9	3 – 8	3 – 18	12 / 15	15 / 20	MX2B	MX2C
MX2M030180 *	1.5 – 9	8 – 12	3 – 18	12 / 15	15 / 20	MX2B	MX2C
MX2H030180	1.5 – 9	12 - 16	3 - 18	12 / 15	15 / 20	MX2B	MX2C
MX2V030180	1.5 - 9	16 - 20	3 - 18	12/15	15 / 20	MX2B	MX2C
WIA20030180	1.5 – 9	20 - 25	5 - 18	12/15	15/20	IVIA2B	IVIA20
MX2J060260	3 – 13	3 – 8	6 – 26	12 / 18	15 / 20	MX2D	
MX2M060260 *	3 – 13	8 – 12	6 – 26	12 / 18	15 / 20	MX2D	
MX2H060260	3 – 13	12 – 16	6 - 26	12 / 18	15 / 20	MX2D	
MX2V060260	3 – 13	16 - 20	6 – 26	12/18	15 / 20	MX2D	
WIX20060260	3 - 13	20 - 25	0 – 20	12/18	15/20	IVIX2D	

* Complete data sheet available inside catalog.

Consult MITEQ for higher-order passive multipliers.

ACTIVE FREQUENCY DOUBLERS

MODEL NUMBER INPUT FREQUENCY (GHz) INPUT POWER (dBm) OUTPUT FREQUENCY (GHz) OUTPUT POWER (dBm, Typ.) CONVERSION GAIN (dB, Typ.) REJECTION FUND./ODD (dBc, Typ.) NOM. DC POWER (dBc, Typ.) NOM. DC POWER (+15 V, mA) OUTL NUMBER MAX2J020040 1 - 2 3 - 8 2 - 4 3 - 8 0 20 / 20 150 MAX. MAX2M020040* 1 - 2 8 - 12 2 - 4 8 - 12 0 20 / 20 150 MAX. MAX2H020040 1 - 2 12 - 16 2 - 4 12 - 16 0 20 / 20 150 MAX. MAX2V020040 1 - 2 16 - 20 2 - 4 16 - 20 0 20 / 20 150 MAX. MAX2V020040 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX. MAX2U040080 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX. MAX2U040080 2 - 4 16 - 20 4 - 8 12 - 16 0 20 / 20 150 MAX. MAX2U0	IE R
MAX2J020040 1 - 2 3 - 8 2 - 4 3 - 8 0 20 / 20 150 MAX MAX2M020040 * 1 - 2 8 - 12 2 - 4 8 - 12 0 20 / 20 150 MAX MAX2H020040 * 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 4 1 - 2 1 - 4 1 - 2 1 - 2 1 - 4 1 - 2 1 - 4 1 - 2 1 - 2 1 - 2 1 - 2 1 - 4 1 - 2	
MAX2J020040 1 - 2 3 - 8 2 - 4 3 - 8 0 20 / 20 150 MAX MAX2M020040 * 1 - 2 8 - 12 2 - 4 8 - 12 0 20 / 20 150 MAX MAX2H020040 1 - 2 12 - 16 2 - 4 12 - 16 0 20 / 20 150 MAX MAX2V020040 1 - 2 16 - 20 2 - 4 16 - 20 0 20 / 20 150 MAX MAX2J040080 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX MAX2M040080 * 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX MAX2M040080 * 2 - 4 8 - 12 4 - 8 8 - 12 0 20 / 20 150 MAX MAX2M040080 * 2 - 4 16 - 20 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20	
MAX2J020040 1 - 2 3 - 8 2 - 4 3 - 8 0 20 / 20 150 MAX MAX2M020040 * 1 - 2 8 - 12 2 - 4 8 - 12 0 20 / 20 150 MAX MAX2H020040 * 1 - 2 12 - 16 2 - 4 12 - 16 0 20 / 20 150 MAX MAX2V020040 1 - 2 16 - 20 2 - 4 16 - 20 0 20 / 20 150 MAX MAX2V020040 1 - 2 16 - 20 2 - 4 16 - 20 0 20 / 20 150 MAX MAX2V020040 1 - 2 16 - 20 2 - 4 16 - 20 0 20 / 20 150 MAX MAX2M040080 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX MAX2M040080 * 2 - 4 12 - 16 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20	
MAX2J020040 $1-2$ $3-8$ $2-4$ $3-8$ 0 $20/20$ 150 MAXMAX2M020040 $1-2$ $8-12$ $2-4$ $8-12$ 0 $20/20$ 150 MAXMAX2H020040 $1-2$ $12-16$ $2-4$ $12-16$ 0 $20/20$ 150 MAXMAX2V020040 $1-2$ $16-20$ $2-4$ $16-20$ 0 $20/20$ 150 MAXMAX2J040080 $2-4$ $3-8$ $4-8$ $3-8$ 0 $20/20$ 150 MAXMAX2H040080 $2-4$ $8-12$ $4-8$ $8-12$ 0 $20/20$ 150 MAXMAX2H040080 $2-4$ $12-16$ $4-8$ $12-16$ 0 $20/20$ 150 MAXMAX2V040080 $2-4$ $12-16$ $4-8$ $12-16$ 0 $20/20$ 150 MAXMAX2J080160 $4-8$ $3-8$ $8-16$ $3-8$ 0 $20/20$ 150 MAXMAX2J080160 $4-8$ $8-12$ $8-16$ $3-8$ 0 $20/20$ 150 MAXMAX2H080160 $4-8$ $12-16$ $8-16$ $12-16$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$ $8-16$ $16-20$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$ $8-16$ $16-20$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$ $8-16$ $16-20$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$	
MAX2M0200401 - 28 - 122 - 48 - 12020 / 20150MAXMAX2H0200401 - 212 - 162 - 412 - 16020 / 20150MAXMAX2V0200401 - 216 - 202 - 416 - 20020 / 20150MAXMAX2J0400802 - 43 - 84 - 83 - 8020 / 20150MAXMAX2H0400802 - 48 - 124 - 88 - 12020 / 20150MAXMAX2H0400802 - 412 - 164 - 812 - 16020 / 20150MAXMAX2H0400802 - 416 - 204 - 816 - 20020 / 20150MAXMAX2J0801604 - 83 - 88 - 163 - 8020 / 20150MAXMAX2J0801604 - 812 - 168 - 1612 - 16020 / 20150MAXMAX2J0801604 - 816 - 208 - 1612 - 16020 / 20150MAXMAX2V0801604 - 816 - 208 - 1616 - 20020 / 20150MAXMAX2V0801604 - 816 - 208 - 1616 - 20020 / 20150MAXMAX2V0801604 - 816 - 208 - 1616 - 20020 / 20150MAXMAX2V0801604 - 816 - 208 - 1616 - 20020 / 20150MAXMAX2V0801604 - 816 - 208 - 1616 - 200<	4
MAX2H020040 $1-2$ $12-16$ $2-4$ $12-16$ 0 $20/20$ 150 MAXMAX2V020040 $1-2$ $16-20$ $2-4$ $16-20$ 0 $20/20$ 150 MAXMAX2J040080 $2-4$ $3-8$ $4-8$ $3-8$ 0 $20/20$ 150 MAXMAX2H040080* $2-4$ $8-12$ $4-8$ $8-12$ 0 $20/20$ 150 MAXMAX2H040080 $2-4$ $12-16$ $4-8$ $12-16$ 0 $20/20$ 150 MAXMAX2V040080 $2-4$ $12-16$ $4-8$ $12-16$ 0 $20/20$ 150 MAXMAX2J080160 $4-8$ $3-8$ $8-16$ $3-8$ 0 $20/20$ 150 MAXMAX2J080160* $4-8$ $12-16$ $8-16$ $12-16$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$ $8-16$ $12-16$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$ $8-16$ $16-20$ 0 $20/20$ 150 MAXMAX2V080160 $4-8$ $16-20$ $8-16$ $16-20$ 0 $20/20$ 150 MAXMAX2J130260 $6.5-13$ $3-8$ $13-26$ $3-8$ 0 $20/20$ 210 MAXMAX2M130260* $6.5-13$ $8-12$ $13-26$ $8-12$ 0 $20/20$ 210 MAX	4
MAX2V02040 1 - 2 16 - 20 2 - 4 16 - 20 0 20 / 20 150 MAX MAX2J040080 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX MAX2J040080 2 - 4 8 - 12 4 - 8 8 - 12 0 20 / 20 150 MAX MAX2H040080 2 - 4 12 - 16 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2H040080 2 - 4 16 - 20 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2J080160 4 - 8 8 - 12 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2H080160 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0	4
MAX2J040080 2 - 4 3 - 8 4 - 8 3 - 8 0 20 / 20 150 MAX MAX2M040080 * 2 - 4 8 - 12 4 - 8 8 - 12 0 20 / 20 150 MAX MAX2H040080 * 2 - 4 12 - 16 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2H040080 2 - 4 12 - 16 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2J080160 * 4 - 8 8 - 12 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2H080160 * 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20	4
MAX2M040080* 2 - 4 8 - 12 4 - 8 8 - 12 0 20 / 20 150 MAX MAX2H040080 2 - 4 12 - 16 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2M080160* 4 - 8 8 - 12 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2H080160 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20	3
MAX2H040080 2 - 4 12 - 16 4 - 8 12 - 16 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2J080160 * 4 - 8 8 - 12 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2H080160 * 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2L130260 6.5 - 13 3 - 8 13 - 26 3 - 8 <td>3</td>	3
MAX2V040080 2 - 4 16 - 20 4 - 8 16 - 20 0 20 / 20 150 MAX MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2M080160 4 - 8 8 - 12 8 - 16 8 - 12 0 20 / 20 150 MAX MAX2H080160 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2J130260 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX MAX2M130260 * 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210	3
MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2M080160 * 4 - 8 8 - 12 8 - 16 8 - 12 0 20 / 20 150 MAX MAX2M080160 * 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2H080160 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2J130260 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX MAX2M130260 * 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210 MAX	3
MAX2J080160 4 - 8 3 - 8 8 - 16 3 - 8 0 20 / 20 150 MAX MAX2M080160 * 4 - 8 8 - 12 8 - 16 8 - 12 0 20 / 20 150 MAX MAX2M080160 * 4 - 8 8 - 12 8 - 16 8 - 12 0 20 / 20 150 MAX MAX2H080160 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2J130260 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX MAX2M130260 * 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210 MAX	
MAX2H080100 4 - 6 0 - 12 0 - 16 8 - 12 0 20 / 20 150 MAX MAX2H080160 4 - 8 12 - 16 8 - 16 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2J130260 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX MAX2M130260 * 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210 MAX	
MAX21000100 4 - 6 12 - 10 6 - 10 12 - 16 0 20 / 20 150 MAX MAX2V080160 4 - 8 16 - 20 8 - 16 16 - 20 0 20 / 20 150 MAX MAX2V080160 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX MAX2M130260* 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210 MAX	2
MAX20080100 4 - 6 16 - 20 6 - 10 16 - 20 0 20 / 20 130 MAX MAX2J130260 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX MAX2M130260* 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210 MAX	2 D
MAX2J130260 6.5 - 13 3 - 8 13 - 26 3 - 8 0 20 / 20 210 MAX2 MAX2M130260 * 6.5 - 13 8 - 12 13 - 26 8 - 12 0 20 / 20 210 MAX2	2
MAX2M130260 * 6.5 – 13 8 – 12 13 – 26 8 – 12 0 20 / 20 210 MAX	С
	2
MAX2H130260 6.5 – 13 12 – 16 13 – 26 12 – 16 0 20 / 20 300 MAX2	С (
MAX2V130260 6.5 - 13 16 - 20 13 - 26 16 - 20 0 20 / 20 350 MAX	2
MAX2M200380S 10 - 19 6 - 14 20 - 38 14 - 16 0 18 / 18 200 MAX	4
MAX2M200400 * 10 - 20 10 - 15 20 - 40 10 - 13 0 18/18 200 MAX	F
MAX2M260400 * 13 - 20 10 - 15 26 - 40 12 - 15 0 18 / 18 200 MAX	F
MAX2M260400 * 13 - 20 10 - 15 26 - 40 12 - 13 0 18/18 200 MAX	З
MAX2M300500* 15-25 10-15 30-50 8-11 0 18/18 200 MAX	F
MAX2M360500 * 18 - 25 10 - 15 36 - 50 8 - 11 0 18 / 18 200 MAX	F
MULTIOCTAVE BANDWIDTH	l i
MAX21010060 05-3 3-8 1-6 3-8 0 20/20 150 MAX	Δ
MAX2M010060 * 0.5 - 3 8 - 12 1 - 6 8 - 12 0 20/20 150 MAX	A
MAX2H010060 0.5 - 3 12 - 16 1 - 6 12 - 16 0 20 / 20 150 MAX	Ą
MAX2V010060 0.5 - 3 16 - 20 1 - 6 16 - 20 0 20 / 20 150 MAX	4
MAX2J030180 1.5-9 3-8 3-18 3-8 0 15/20 150 MAX	3
MAX2M030180 * 1.5 - 9 8 - 12 3 - 18 8 - 12 0 15 / 20 150 MAX	3
MAX2HU3U18U 1.5 - 9 12 - 16 3 - 18 12 - 16 0 15 / 20 150 MAX	5
MAX2VU3U18U 1.5 – 9 16 – 20 3 – 18 16 – 20 0 15 / 20 150 MAX	5
MAX2J060260 3-13 3-8 6-26 3-8 0 12/15 210 MAX	С
MAX2M060260* 3-13 8-12 6-26 8-12 0 12/15 210 MAX	С
MAX2H060260 3-13 12-16 6-26 12-16 0 12/15 300 MAX	С
MAX2V060260 3-13 16-20 6-26 16-20 0 12/15 350 MAX2	2
* Complete data sheet available inside catalog.	

MODEL NUMBER	INPUT Frequency (GHz)	INPUT POWER (dBm)	OUTPUT Frequency (GHz)	OUTPUT POWER (dBm, Typ.)	CONVERSION GAIN (dB, Typ.)	HARMONIC Rejection In/out (dBc,Typ.)	NOM. DC POWER (+15 V, mA)	OUTLINE NUMBER
		DOL	JBLERS WIT	'H INTEGR	ATED FILTE	RS		
MAX2M097103	4.88 – 5.13	8 – 12	9.76 - 10.26	11 – 15	3	-60 / -15	160	Consult factory
MAX2M132152	6.6 - 7.63	8 – 12	13.21 – 15.26	11 – 15	3	-60 / -15	160	Consult factory

ACTIVE FREQUENCY TRIPLERS

						HARMONIC				
MODEL NUMBER	INPUT FREQUENCY (GHz)	INPUT POWER (dBm)	OUTPUT FREQUENCY (GHz)	OUTPUT POWER (dBm, Typ.)	CONVERSION GAIN (dB, Typ.)	REJECTION IN/OUT (dBc, Min.)	POWER FLATNESS (±dB, Typ.)	VSWR IN/OUT (Typ.)	NOM. DC POWER (+5 V, mA)	OUTLINE NUMBER
				TRIF	PLERS					
MAX3J045050	1.5 – 1.67	3 – 8	4.5 – 5	6 – 11	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3M045050	1.5 – 1.67	8 - 12	4.5 – 5	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H045050	1.5 - 1.67	12 - 16	4.5 – 5	12 - 16	0	-607-15	1 2:	1/1.5:1	120	IVIAX3A
MAX3J050055	1.67 – 1.83	3 – 8	5 – 5.5	6 – 11	3	-60 / -15	1 2:	1 / 1.5:1	120	МАХЗА
MAX3M050055	1.67 – 1.83	8 – 12	5 – 5.5	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H050055	1.67 – 1.83	12 – 16	5 – 5.5	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	МАХЗА
	102 0	2 0	5 5 G	6 11	2	60 / 15	1 2.	1 / 1 5.1	120	MAY2A
MAX3M055060	1.03 - 2	3 – 0 8 – 12	55-6	11 – 15	3	-60 / -15	1 2.	1/1.5.1	120	MAX3A
MAX3H055060	1.03 - 2	12 - 16	5.5 - 6	12 – 16	0	-60 / -15	1 2	1/1.5.1	120	MAX3A
10000000	1.00 2	12 10	0.0 0	12 10	0	007 10	1 2.	1 / 1.0.1	120	111/0/07
MAX3J060065	2 – 2.16	3 – 8	6 - 6.5	6 – 11	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3M060065	2 – 2.16	8 – 12	6 – 6.5	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H060065	2 – 2.16	12 – 16	6 - 6.5	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	МАХЗА
MAX3.1065070	2 16 - 2 33	3 – 8	65-7	6 – 11	3	-60 / -15	1 2.	1/15.1	120	MAX3A
MAX3M065070	2.16 - 2.33	8 – 12	6.5 – 7	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H065070	2.16 – 2.33	12 – 16	6.5 – 7	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
	0.00 0.5	0 0		0 11	0	00 / 45	4	4 / 4 5 4	400	
MAX3J070075	2.33 - 2.5	3 - 8	7 - 7.5	6 - 11	3	-60 / -15	1 2:		120	MAX3A
	2.33 - 2.3	0 - 12	7 7 5	11 - 15	0	-60 / -15	1 2.	1/1.5.1	120	MAY2A
WAX311070073	2.33 - 2.3	12 - 10	7 - 7.5	12 - 10	0	-007-13	1 2.	1/1.5.1	120	IVIAAJA
MAX3J075080	2.5 – 2.66	3 – 8	7.5 – 8	6 – 11	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3M075080	2.5 – 2.66	8 – 12	7.5 – 8	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H075080	2.5 – 2.66	12 – 16	7.5 – 8	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3J080085	2.66 – 2.83	3 – 8	8 – 8.5	6 – 11	3	-60 / -15	1 2:	1 / 1.5:1	120	МАХЗА
MAX3M080085	2.66 - 2.83	8 – 12	8 – 8.5	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H080085	2.66 - 2.83	12 – 16	8 – 8.5	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	МАХЗА
MAX3 10/13052	1 /3 - 1 73	3 – 8	13-52	6 – 11	3	-60 / -15	1 2.	1/151	120	ΜΔΧ3Δ
MAX3M043052	1.43 – 1.73	8 – 12	4.3 - 5.2	11 – 15	3	-60 / -15	1 2	1/1.5.1	120	MAX3A
MAX3H043052	1.43 – 1.73	12 – 16	4.3 – 5.2	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
				- <i>11</i>						
MAX3J047056	1.56 - 1.86	3 - 8	4.7 - 5.6	6 – 11	3	-60 / -15	1 2:	1/1.5:1	120	MAX3A
MAX3M047056	1.56 - 1.86	8 - 12	4.7 - 5.6	11 - 15	3	-60 / -15	1 2:	1/1.5:1	120	MAX3A
MAX3H047056	1.56 - 1.86	12 – 16	4.7 - 5.6	12 – 16	0	-60 / -15	1 2:	1/1.5:1	120	MAX3A
MAX3J063074	2.1 - 2.46	3 – 8	6.3 – 7.4	6 – 11	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3M063074	2.1 - 2.46	8 – 12	6.3 - 7.4	11 – 15	3	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3H063074	2.1 – 2.46	12 – 16	6.3 – 7.4	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3.J070083	2.3 - 2.76	3 – 8	7 - 8.3	6 – 11	3	-60 / -15	1 2.	1/151	120	MAX3A
MAX3M070083	2.3 - 2.76	8 – 12	7 – 8.3	11 – 15	3	-60 / -15	1 2	1 / 1.5:1	120	MAX3A
MAX3H070083	2.3 – 2.76	12 – 16	7 – 8.3	12 – 16	0	-60 / -15	1 2:	1 / 1.5:1	120	MAX3A
MAX3M300300	10	10 – 15	30	10 – 13	0	18 / 18	- 3	8:1 / 2.1	160*	MAX2F

* Nominal current at +15 VDC.

HIGHER-ORDER ACTIVE MULTIPLIERS

MODEL Number	INPUT FREQUENCY (GHz)	INPUT POWER (dBm)	OUTPUT FREQUENCY (GHz)	OUTPUT POWER (dBm, Typ.)	CONVERSION GAIN (dB, Typ.)	HARMONIC REJECTION IN/OUT (dBc, Min.)	POWER FLATNESS (±dB, Typ.)	VSWR IN/OUT (Typ.)	NOM. DC Power (+15 V, mA)	OUTLINE Number
				QUADR	UPLERS					
MAX4J050055	1.25 – 1.375	3 – 8	5 - 5.5	6 – 11	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4M050055 *	1.25 - 1.375	8 – 12	5 - 5.5	11 – 15	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4H050055	1.25 – 1.375	12 – 16	5 – 5.5	12 – 16	0	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4J055060	1.375 – 1.5	3 – 8	5.5 – 6	6 – 11	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4M055060	1.375 – 1.5	8 – 12	5.5 – 6	11 – 15	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4H055060	1.375 – 1.5	12 – 16	5.5 – 6	12 – 16	0	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
	4.5 4.005		0 0 5	0 44	2	50 / 45			450	
MAX4J060065	1.5 - 1.625	3 - 8	6 - 6.5	6 - 11	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
	1.5 - 1.625	8 - 12	6 - 6.5	11 - 15	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
WAX4H060065	1.5 - 1.625	12 - 16	6 – 6.5	12 - 16	0	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4M062071 *	1.55 – 1.78	8 – 12	6.2 – 7.1	11 – 15	3	-50 / -15	2	2:1 / 1.5:1	150	MAX4A
MAX41005070	4 005 4 75	0 0	05 7	0 44	0	50 / 45		0.4 / 4 5.4	450	
	1.020 - 1.75	3 - 8	0.5 - 7	0 - 11	3	-50 / -15	1	2:1/1.5:1	150	
	1.020 - 1.75	0 - 1Z	0.5 - 7	11 - 15	3	-50 / -15	1	2.1/1.5.1	150	
WAA4005070	1.025 - 1.75	12 - 10	0.0 - 7	12 - 10	0	-507-15	I	2.1/1.3.1	150	IVIAA4A
MAX4,1070075	1.75 – 1.875	3 – 8	7 - 7.5	6 – 11	3	-50 / -15	1	2.1/1.5.1	150	MAX4A
MAX4M070075	1.75 – 1.875	8 – 12	7 – 7.5	11 – 15	3	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4H070075	1.75 – 1.875	12 – 16	7 – 7.5	12 – 16	0	-50 / -15	1	2:1 / 1.5:1	150	MAX4A
MAX4M400480 *	10 – 12	10 – 15	40 - 48	8 – 11	0	18 / 18	2	3:1 / 2.5:1	150	MAX2H
				QUINT	JPLERS					
MAX5M65075 *	1.3 – 1.5	8 – 12	6.5 – 7.5	11 – 15	3	-40 / -15	1.5	2:1 / 1.5:1	150	MAX5A
MAX5 1085090	17-18	3 – 8	85-9	6 – 11	3	-60 / -15	1	2.1 / 1 5.1	150	ΜΑΧ5Α
MAX5M085090	1.7 – 1.8	8 – 12	8.5 - 9	11 - 15	3	-60 / -15	1	2.1/1.5.1	150	MAX5A
MAX5H085090	1.7 – 1.8	12 – 16	8.5 - 9	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A

MAX5H085090	1.7 – 1.8	12 – 16	8.5 – 9	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5J090095	1.8 – 1.9	3 – 8	9 – 9.5	6 – 11	3	-60 / -15	1	2:1 / 1.5.:1	150	MAX5A
MAX5M090095	1.8 – 1.9	8 – 12	9 - 9.5	11 – 15	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5H090095	1.8 – 1.9	12 – 16	9 – 9.5	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5J095105	1.9 – 2.1	3 – 8	9.5 – 10.5	6 – 11	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5M095105	1.9 – 2.1	8 – 12	9.5 – 10.5	11 – 15	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5H095105	1.9 – 2.1	12 – 16	9.5 – 10.5	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5J105115	2.1 – 2.3	3 – 8	10.5 – 11.5	6 – 11	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5M105115	2.1 – 2.3	8 – 12	10.5 – 11.5	11 – 15	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5H105115	2.1 – 2.3	12 – 16	10.5 – 11.5	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5J115125	2.3 – 2.5	3 – 8	11.5 – 12.5	6 – 11	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5M115125	2.3 – 2.5	8 – 12	11.5 – 12.5	11 – 15	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5H115125	2.3 – 2.5	12 – 16	11.5 – 12.5	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5J125135	2.5 – 2.7	3 – 8	12.5 – 13.5	6 – 11	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5M125135	2.5 – 2.7	8 – 12	12.5 – 13.5	11 – 15	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5H125135	2.5 – 2.7	12 – 16	12.5 – 13.5	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5J135145	2.7 – 2.9	3 – 8	13.5 – 14.5	6 – 11	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5M135145	2.7 – 2.9	8 – 12	13.5 – 14.5	11 – 15	3	-60 / -15	1	2:1 / 1.5:1	150	MAX5A
MAX5H135145	2.7 - 2.9	12 – 16	13.5 - 14.5	12 – 16	0	-60 / -15	1	2:1 / 1.5:1	150	MAX5A

* Complete data sheet available inside catalog.

HIGHER-ORDER ACTIVE MULTIPLIERS (CONT.)

	INPUT	INPUT	OUTPUT	OUTPUT	CONVERSION	HARMONIC Rejection	POWER	VSWR	NOM. DC	
MODEL NUMBER	FREQUENCY (GHz)	POWER (dBm)	FREQUENCY (GHz)	POWER (dBm, Typ.)	GAIN (dB, Typ.)	IN/OUT (dBc, Min.)	FLATNESS (±dB, Typ.)	IN/OUT (Typ.)	POWER (+15 V, mA)	OUTLINE NUMBER
			QL	JINTUPL	ERS (CON	JT.)				
MAX5J114127 MAX5M114127 MAX5H114127	2.28 – 2.56 2.28 – 2.56 2.28 – 2.56	3 – 8 8 – 12 12 – 16	11.4 – 12.8 11.4 – 12.8 11.4 – 12.8	6 – 11 11 – 15 12 – 16	3 3 0	-60 / -15 -60 / -15 -60 / -15	1 1 1	2:1 / 1.5: 2:1 / 1.5: 2:1 / 1.5:	1 150 1 150 1 150	MAX5A MAX5A MAX5A
MAX5J127142 MAX5M127142 MAX5H127142	2.54 - 2.84 2.54 - 2.84 2.54 - 2.84	3 - 8 8 - 12 12 - 16	12.7 – 14.2 12.7 – 14.2 12.7 – 14.2	6 – 11 11 – 15 12 – 16	3 3 0	-60 / -15 -60 / -15 -60 / -15	1 1 1	2:1 / 1.5: 2:1 / 1.5: 2:1 / 1.5:	l 150 l 150 l 150	MAX5A MAX5A MAX5A
				FREQU	ENCY X 6					
MAX6M126132 *	2.1 – 2.2	10	12.6 – 13.2	20	10	-60 / -15	1	2:1 / 1.5:1	1 450	* *
				FREQU	ENCY X 8					
MAX8S070070 MAX8M080085	0.875 1.0 – 1.06	10 10	7 8 - 8.5	-2 14	-12 4	-65 / -50 -50 / -15	N/A 1.5	2:1 / 1.5: ⁻ 2:1 / 1.5: ⁻	1 450 1 450	* *
				FREQUE	NCY X 10)				
MAX10M093098	0.93 – 0.98	10	9.3 – 9.8	10	0	-50 / -15	1.5	2:1 / 1.5:1	I 450	* *
				FREQUE	NCY X 12	2				
MAX12M009009	0.081 - 0.082	8 – 12	0.972 – 0.984	8 – 12	0	-60 / -15	1	2:1 / 1.5:1	1 450	* *
				FREQUE	NCY X 1	3				
MAX13M104104	0.8	10	10.4	15	5	-50 / -50	N/A	2.5:1 / 2:1	450	* *
				FREQUE	NCY X 10	5				
MAX16S013015 * MAX16J064069 *	0.085 - 0.097 0.397 - 0.428	-12 7	1.36 – 1.56 6.36 – 6.86	20 20	32 13	-60 / -15 -60 / -40	1 1	2:1 / 1.5: ² 2:1 / 2:1	I 550 550	* *
				FREQUE	NCY X 32	2				
MAX32S027029 *	0.085 - 0.092	-10	2.7 – 2.94	10	20	-60 / -50	1.5	2:1 / 1.5:1	1 550	* *
				FREQUE	NCY X 48	3				
MAX48S029031	0.062 - 0.063	10	2.976 – 3.024	-10	-20	-60 / -15	1	2:1 / 1.5:	1 550	* *
				FREQUE	NCY X 64	1				
MAX64M068068	0.106	10	6.784	15	5	-50 / -15	N/A	2.5:1 / 1.5:1	550	* *
 Complete data s ** Consult factory 	sheet available ir for specific packa	nside catal aging infor	og. mation.							

13

HIGHER-ORDER ACTIVE MULTIPLIERS (CONT.)

MODEL NUMBER	INPUT Frequency (GHz)	OUTPUT Frequency (GH7)	INPUT/OUTPUT POWER (dBm)	CONVERSION GAIN (dB, Typ.)	VOLTAGE CURRENT (+VV. mA)	HARMONIC REJECTION IN/OUT (dBc, Min.)	POWER FLATNESS (+dB, Tvn.)	VSWR IN/OUT (Tvn.)	OUTLINE NUMBER
	()	()	()			((, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(-36-)	
			CFS	STAND	ARU				
MAX2M045055	2.25 – 2.78	4.5 - 5.58	8 – 10	0	+5. 120	-65 / -15	1.5	2:1 / 2:1	MAX2D
MAX2M055059	2.75 – 2.94	5.51 - 5.59	8 – 10	0	+5, 120	-65 / -15	1.5	2:1 / 2:1	MAX2D
MAX4M088095	2.2 – 2.37	8.88 – 9.48	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M109115	2.73 – 2.88	10.91 – 11.53	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M114120	2.86 - 3.01	11.46 – 12.03	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M114126	2.86 – 3.14	11.46 – 12.57	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M124133	3.11 – 3.32	12.46 – 13.28	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M127134	3.17 – 3.32	12.71 – 13.3	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M127148	3.18 – 3.85	12.72 – 14.84	8 - 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C
MAX4M129138	3.24 - 3.45	12.97 – 13.79	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4B
MAX4M139144	3.48 - 3.61	13.95 – 14.46	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C
MAX4M144146	3.61 – 3.65	14.4 - 14.66	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C
MAX4M145154	3.62 - 4.22	14.5 – 15.4	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C
MAX4M150162	3.75 – 4.05	15 – 16.17	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C
MAX4M152163	3.8 - 4.08	15.21 – 16.31	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C
MAX4M160169	4 - 4.22	16 - 16.9	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	MAX4C

MODEL Number	INPUT FREQUENCY (GHz)	OUTPUT Frequency (GHz)	INPUT/ OUTPUT POWER (dBm)	CONVERSION GAIN (dBm, Typ.)	VOLTAGE CURRENT (+V, -V, mA)	HARMONIC REJECTION IN/OUT (dB)	POWER FLATNESS (±dB, Typ.)	VSWR IN/OUT (Typ.)	COUPLED PORT PWR RANGE (dB)*	OUTLINE NUMBER
				CFS	9700					
MAX2M04055-C	2.25 – 2.78	4.5 - 5.58	8 – 10	0	+5, 120	-65 / -15	1.5	2:1 / 2:1	-17 to -23	MAX2E
MAX2M055059-C	2.75 – 2.94	5.51 – 5.59	8 – 10	0	+5, 120	-65 / -15	1.5	2:1 / 2:1	-17 to -23	MAX2E
MAX4M104110-C	2.6 – 2.75	10.4 – 11	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	-17 to -23	MAX4D
MAX4M114126-C	2.86 – 3.14	11.46 – 12.57	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	-17 to -23	MAX4D
MAX4M127148-C	3.18 – 3.85	12.72 – 14.84	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	-17 to -23	MAX4E
MAX4M150162-C	3.75 – 4.05	15 – 16.17	8 – 10	0	+5, -2.5, 120	-65 / -15	1.5	2:1 / 2:1	-17 to -23	MAX4E
* Used to monitor main port										

PASSIVE FREQUENCY DOUBLERS

MODEL: MX2M020040

ELECTRICAL SPECIFICATIONS				
Input frequency range	1 – 2 GHz minimum			
Output frequency range	2 – 4 GHz minimum			
Input power range	8 – 12 dBm nominal			
Conversion loss	9.5 dB typical			
	13 dB maximum			
Harmonic rejection				
Fundamental	20 dB typical			
Odd harmonic	20 dB typical			
Input power range Conversion loss Harmonic rejection Fundamental Odd harmonic	8 – 12 dBm nominal 9.5 dB typical 13 dB maximum 20 dB typical 20 dB typical			

MX2A

Notes:

1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$

2. Optional SMA, K or V type male connectors in either input, output or both.

-4 -6

-8

-10

5

7

9

 $(P_{IN} = +10 \text{ dBm})$

INPUT POWER (dBm)

11

13

15

MODEL: MX2M040080

ELECTRICAL SPECI	FICATIONS
Input frequency range	2 – 4 GHz minimum
Output frequency range	4 – 8 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	11 dB typical
	13 dB maximum
Harmonic rejection	
Fundamental	20 dB typical
Odd harmonic	20 dB typical
	I /

 $(P_{IN} = +10 \text{ dBm})$

MX2B

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional MX2C package available, see outline section.

MODEL: MX2M080160

ELECTRICAL SPECIFICATIONS				
Input frequency range	4 – 8 GHz minimum			
Output frequency range	8 – 16 GHz minimum			
Input power range	8 – 12 dBm nominal			
Conversion loss	11 dB typical			
	13 dB maximum			
Harmonic rejection				
Fundamental	20 dB typical			
Odd harmonic	20 dB typical			

INPUT POWER (dBm)

(P_{IN} = +10 dBm)

MX2B

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional MX2C package available, see outline section.

MODEL: MX2M130260

	ELECTRICAL SPECIFICATIONS			
	Input frequency range	6.5 – 13 GHz minimum		
	Output frequency range	13 – 26 GHz minimum		
	Input power range	8 – 12 dBm nominal		
	Conversion loss	11 dB typical		
		13 dB maximum		
	Harmonic rejection			
	Fundamental	20 dB typical		
	Odd harmonic	20 dB typical		
<u></u>				

-8

-10

5

7

9

 $(P_{IN} = +10 \text{ dBm})$

11

INPUT POWER (dBm)

13

15

MX2D

Notes:

1. Dimensions are in inches [millimeters] Tolerance as follows: .xx = ±0.01 [.xx = ±0.25] .xxx = ±0.005 [.xxx = ±0.13]

2. Optional SMA, K or V type male connectors in either input, output or both.

3. Doubler may be readily used as is, or as a drop-in by removing the SMA connectors and mounting hardware as shown.

MODEL: MX2M260400

ELECTRICAL SPECI	FICATIONS
Input frequency range	13 – 20 GHz minimum
Output frequency range	26 – 40 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	10 dB typical
	13 dB maximum
Harmonic rejection	
Fundamental	15 dB typical
Odd harmonic	15 dB typical
	· /

MX2E

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MX2M010060

ELECTRICAL SPECIFICATIONS				
Input frequency range	0.5 – 3 GHz minimum			
Output frequency range	1 – 6 GHz minimum			
Input power range	8 – 12 dBm nominal			
Conversion loss	10.5 dB typical			
	15 dB maximum			
Harmonic rejection				
Fundamental	15 dB typical			
Odd harmonic	20 dB typical			

MX2A

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MX2M004010

ELECTRICAL SPECI	FICATIONS
Input frequency range	0.02 – 0.5 GHz minimum
Output frequency range	0.04 – 1 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	10.5 dB typical
	13 dB maximum
Harmonic rejection	
Fundamental	25 dB typical
Odd harmonic	25 dB typical
\ \	· /

MX2A

Notes:

1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$

2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MX2M030180

ELECTRICAL SPECI	FICATIONS
Input frequency range	1.5 – 9 GHz minimum
Output frequency range	3 – 18 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	12 dB typical
	15 dB maximum
Harmonic rejection	
Fundamental	15 dB typical
Odd harmonic	20 dB typical

MX2B

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional MX2C package available, see outline section.

MODEL: MX2M060260

ELECTRICAL SPECIFICATIONS				
Input frequency range	3 – 13 GHz minimum			
Output frequency range	6 – 26 GHz minimum			
Input power range	8 – 12 dBm nominal			
Conversion loss	12 dB typical			
	15 dB maximum			
Harmonic rejection				
Fundamental	15 dB typical			
Odd harmonic	20 dB typical			
	/			

MX2D

Notes:

1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$

2. Optional SMA, K or V type male connectors in either input, output or both.

3. Doubler may be readily used as is, or as a drop-in by removing the SMA connectors and mounting hardware as shown.

-8

-10

5

7

9

(P_{IN} = +10 dBm)

11

INPUT POWER (dBm)

13

15

ACTIVE FREQUENCY DOUBLERS

MODEL: MAX2M020040

ELECTRICAL SPECIFICATIONS				
Input frequency range	1 – 2 GHz minimum			
Output frequency range	2 – 4 GHz minimum			
Input power range	8 – 12 dBm nominal			
Conversion loss	0 dB typical			
Harmonic rejection				
Fundamental	20 dB typical			
Odd harmonic	20 dB typical			

MAX2A

Notes:

1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$

- .110 [2.79]

2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M040080

	ELECTRICAL SPECI	FICATIONS
	Input frequency range	2 – 4 GHz minimum
	Output frequency range	4 – 8 GHz minimum
	Input power range	8 – 12 dBm nominal
	Conversion loss	0 dB typical
	Harmonic rejection	
	Fundamental	20 dB typical
	Odd harmonic	20 dB typical
· ·		

MAX2B

.210 [5.33]

- .360 [9.14]

- 1. Dimensions are in inches [millimeters] Tolerance as follows: .xx = ±0.01 [.xx = ±0.25] .xxx = ±0.005 [.xxx = ±0.13]
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M080160

FICATIONS
4 – 8 GHz minimum
8 – 16 GHz minimum
8 – 12 dBm nominal
0 dB typical
20 dB typical
20 dB typical

15

10

5

8

9.6

11.2

(P_{IN} = +10 dBm)

FREQUENCY (GHz)

12.8

14.4

16

MAX2B

-.360 [9.14]

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M130260

ELECTRICAL SPECIFICATIONS	
Input frequency range	6.5 – 13 GHz minimum
Output frequency range	13 – 26 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	0 dB typical
Harmonic rejection	
Fundamental	20 dB typical
Odd harmonic	20 dB typical

- 1. Dimensions are in inches [millimeters] Tolerance as follows: .xx = ±0.01 [.xx = ±0.25] .xxx = ±0.005 [.xxx = ±0.13]
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M200400

	ELECTRICAL SPECI	FICATIONS
	Input frequency range	10 – 20 GHz minimum
	Output frequency range	20 – 40 GHz minimum
	Input power range	10 – 15 dBm nominal
	Harmonic rejection	
	Fundamental	18 dB typical
	Odd harmonic	18 dB typical
_		

Х3

28

 $(P_{IN} = +10 \text{ dBm})$

FREQUENCY (GHz)

32

36

40

-40

-45

-50 -55 -60 20

24

MAX2F

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional waveguide output available, please contact factory.

MODEL: MAX2M260400

ELECTRICAL SPECI	FICATIONS
Input frequency range	13 – 20 GHz minimum
Output frequency range	26 – 40 GHz minimum
Input power range	10 – 15 dBm nominal
Harmonic rejection	
Fundamental	18 dB typical
Odd harmonic	18 dB typical
	I /

FUNDAMENTAL REJECTION VS. FREQUENCY

MAX2F

- 1. Dimensions are in inches [millimeters] Tolerance as follows: .xx = ± 0.01 [.xx = ± 0.25] .xxx = ± 0.005 [.xxx = ± 0.13]
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional waveguide output available, please contact factory.

MODEL: MAX2M260400W (WAVEGUIDE WR28 OUTPUT)

ELECTRICAL SPECIF	ICATIONS
Input frequency range	13 – 20 GHz minimum
Output frequency range	26 – 40 GHz minimum
Input power range	10 – 15 dBm nominal
Harmonic rejection	
Fundamental	> 20 dB typical
Odd harmonic	> 20 dB typical

MAX2G

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M300500

	ELECTRICAL SPECI	FICATIONS
	Input frequency range	15 – 25 GHz minimum
	Output frequency range	30 – 50 GHz minimum
	Input power range	10 – 15 dBm nominal
	Harmonic rejection	
	Fundamental	18 dB typical
	Odd harmonic	18 dB typical
~		

MAX2F

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional waveguide output available, please contact factory.

MODEL: MAX2M360500

ELECTRICAL SPECI	FICATIONS
Input frequency range	18 – 25 GHz minimum
Output frequency range	36 – 50 GHz minimum
Input power range	10 – 15 dBm nominal
Harmonic rejection	
Fundamental	18 dB typical
Odd harmonic	18 dB typical

FUNDAMENTAL REJECTION VS. FREQUENCY

MAX2F

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
 - 2. Optional SMA, K or V type male connectors in either input, output or both.
 - 3. Optional waveguide output available, please contact factory.

MODEL: MAX2M010060

ELECTRICAL SPECI	FICATIONS
Input frequency range	0.5 – 3 GHz minimum
Output frequency range	1 – 6 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	0 dB typical
Harmonic rejection	
Fundamental	20 dB typical
Odd harmonic	20 dB typical
Input power range Conversion loss Harmonic rejection Fundamental Odd harmonic	8 – 12 dBm nominal 0 dB typical 20 dB typical 20 dB typical

MAX2A

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M030180

ELECTRICAL SPECIFICATIONS	
Input frequency range	1.5 – 9 GHz minimum
Output frequency range	3 – 18 GHz minimum
Input power range	8 – 12 dBm nominal
Conversion loss	0 dB typical
Harmonic rejection	
Fundamental	15 dB typical
Odd harmonic	20 dB typical

MAX2B

- 1. Dimensions are in inches [millimeters] Tolerance as follows: $.xx = \pm 0.01 [.xx = \pm 0.25]$ $.xxx = \pm 0.005 [.xxx = \pm 0.13]$
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MODEL: MAX2M060260

	ELECTRICAL SPECIFICATIONS	
	Input frequency range	3 – 13 GHz minimum
	Output frequency range	6 – 26 GHz minimum
	Input power range	8 – 12 dBm nominal
	Conversion loss	0 dB typical
	Harmonic rejection	
	Fundamental	12 dB typical
	Odd harmonic	15 dB typical
×		· · · · · · · · · · · · · · · · · · ·

(P_{IN} = +10 dBm)

Notes:

1. Dimensions are in inches [millimeters] Tolerance as follows: .xx = ±0.01 [.xx = ±0.25] .xxx = ±0.005 [.xxx = ±0.13]

2. Optional SMA, K or V type male connectors in either input, output or both.

ACTIVE MULTIPLIER ASSEMBLIES

9 TO 11.4 GHz, LOW OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	3 – 3.8 GHz minimum
Input power	+12 dBm minimum
Input VSWR	2:1 typical
Output frequency	9 – 11.4 GHz minimum
Output power	+5 dBm minimum
Output power flatness (at +25°C)	±2.5 dB maximum
Output spurious rejection	-50 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-50 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC, 150 mA

12.9 TO 14.7 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	4.3 – 4.9 GHz minimum
Input power	+10 dBm minimum
Input VSWR	2:1 typical
Output frequency	12.9 – 14.7 GHz minimum
Output power	+15 dBm minimum
Output power flatness (at +25°C)	±1 dB maximum
Output spurious rejection	-50 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-50 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC, 150 mA

X 3 ACTIVE MULTIPLIER ASSEMBLIES

OPTIONS

• Input Power +5 to +20 dBm

13.8 TO 16.2 GHz, LOW OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	4.6 – 5.4 GHz minimum
Input power	+12 dBm minimum
Input VSWR	2:1 typical
Output frequency	13.8 – 16.2 GHz minimum
Output power	0 dBm minimum
Output power flatness (at +25°C)	±1.25 dB maximum
Output spurious rejection	-50 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-50 dBc typical
Output VSWR	2:1 typical
DC power	+15 VDC, 150 mA
Output Irequency Output power Output power flatness (at +25°C) Output spurious rejection Output harmonic rejection Rejection of input harmonics Output VSWR DC power	13.8 - 16.2 GH2 Minimum 0 dBm minimum ±1.25 dB maximum -50 dBc typical -15 dBc typical -50 dBc typical 2:1 typical ±15 VDC, 150 mA

SWEPT OUTPUT POWER (with +12 dBm input) (ug) 4 4 4 4 4 4 0 13.8 14.28 14.76 15.24 15.72 16.2 (GHz) 15.72 16.2

5 TO 5.5 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	1.25 – 1.375 GHz minimum
Input power	+10 dBm minimum
Input VSWR	2:1 typical
Output frequency	5 – 5.5 GHz minimum
Output power	+14 dBm minimum
Output power flatness (at +25°C)	±1.5 dB maximum
Output spurious rejection	-60 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-50 dBc typical
Output VSWR	2:1 typical
DC power	+15 VDC, 250 mA

6.2 TO 7.1 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	1.55 – 1.78 GHz minimum
Input power	+10 dBm typical
Input VSWR	2:1 typical
Output frequency	6.2 – 7.1 GHz minimum
Output power	+10 dBm minimum
Output power flatness (at +25°C)	±2 dB maximum
Output spurious rejection	-65 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-65 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC, 250 mA

SWEPT OUTPUT POWER

X 4 ACTIVE MULTIPLIER ASSEMBLIES

OPTIONS

• Input Power +5 to +20 dBm

40 TO 48 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	10 – 12 GHz minimum
Input power	+10 dBm minimum
Output frequency	40 – 48 GHz minimum
Output power	+8 dBm minimum
Output power flatness (at +25°C)	±2 dB maximum
Output spurious rejection	-60 dBc typical
Rejection of input harmonics	-18 dBc typical
DC power	+15 VDC, 200 mA

9.75 TO 10.5 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	2.437 – 2.626 GHz minimum
Input power	+7 dBm minimum
Input VSWR	2.5:1 typical
Output frequency	9.75 – 10.5 GHz minimum
Output power	+10 dBm minimum
Output power flatness (at +25°C)	±2 dB maximum
Output spurious rejection	-65 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-65 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC 250 mA

12.71 TO 13.28 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	3.1775 – 3.32 GHz minimum
Input power	+12 dBm minimum
Input VSWR	2.5:1 typical
Output frequency	12.71 – 13.28 GHz minimum
Output power	+13 dBm minimum
Output power flatness (at +25°C)	±1 dB maximum
Output spurious rejection	-65 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-65 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC, 250 mA
•	

SWEPT OUTPUT POWER

6.5 TO 7.5 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	1.2 1.5 CHz minimum
Input nequency	
Input power	+10 dBm minimum
Input VSWR	2:1 typical
Output frequency	6.5 – 7.5 GHz minimum
Output power	+14 dBm minimum
Output power flatness (at +25°C)	±1.5 dB maximum
Output spurious rejection	-40 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-40 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC 250 mA

9.75 TO 11.375 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	1.95 – 2.275 GHz minimum
Input power	+10 dBm minimum
Input VSWR	2:1 typical
Output frequency	9.75 – 11.375 GHz minimum
Output power	+10 dBm minimum
Output power flatness (at +25°C)	±1 dB maximum
Output spurious rejection	-65 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-65 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC, 150 mA

SWEPT OUTPUT POWER

X 5 ACTIVE MULTIPLIER ASSEMBLIES

OPTIONS

• Input Power +5 to +20 dBm

ELECIRICAL	SPECIFICATIONS	
Input	1280 MHz @ 10 dBm minimum	
Output	6400 MHz @ 10 dBm minimum	
Input harmonic rejection	-80 dBc	
Output harmonic rejection	-20 dBc	
DC power	+5 VDC @ 280 mA	
This unit is hermetically seale refer to MAX5B.	d for flight applications. For outline	,
	Input Output Input harmonic rejection Output harmonic rejection DC power This unit is hermetically seale refer to MAX5B.	Input1280 MHz @ 10 dBm minimumOutput6400 MHz @ 10 dBm minimumInput harmonic rejection-80 dBcOutput harmonic rejection-20 dBcDC power+5 VDC @ 280 mAThis unit is hermetically sealed for flight applications. For outline refer to MAX5B.

ELECTRICAL SPECIFICATIONS

X 5 ACTIVE MULTIPLIER ASSEMBLIES

12.6 TO 13.2 GHz, HIGH OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	2.1 – 2.2 GHz minimum
Input power	+10 dBm minimum
Input VSWR	2:1 typical
Output frequency	12.6 – 13.2 GHz minimum
Output power	+20 dBm minimum
Output power flatness (at +25°C)	±1 dB maximum
Output spurious rejection	-65 dBc typical
Output harmonic rejection	-15 dBc typical
Rejection of input harmonics	-65 dBc typical
Output VSWR	1.5:1 typical
DC power	+15 VDC

X 6 ACTIVE MULTIPLIER ASSEMBLIES

OPTIONS

• Input Power +5 to +20 dBm

1.36 TO 1.56 GHz, HIGH OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	0.085 – 0.097 GHz minimum	
Input power	-12 dBm minimum	
Input VSWR	2:1 typical	
Output frequency	1.36 – 1.56 GHz minimum	
Output power	+20 dBm minimum	
Output power flatness (at +25°C)	±2 dB maximum	
Output spurious rejection	-65 dBc typical	
Output harmonic rejection	-20 dBc typical	
Rejection of input harmonics	-65 dBc typical	
Output VSWR	1.5:1 typical	
DC power	+15 VDC	
SWEPT OUTPUT POWER (with -12 dBm input)		
25		
24 23 23		

1.4 1.44 1.48 1.52 OUTPUT FREQUENCY (GHz)

1.36

1.56

X 16 ACTIVE MULTIPLIER ASSEMBLIES

6.36 TO 6.86 GHz, HIGH OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	0.397 – 0.428 GHz minimum
Input power	+7 dBm
Input VSWR	2:1 typical
Output frequency	6.36 – 6.86 GHz minimum
Output power	+20 dBm minimum
Output power flatness (at +25°C)	±0.5 dB maximum
Output spurious rejection	-70 dBc minimum
Output harmonic rejection	-40 dBc minimum
Rejection of input harmonics	-70 dBc typical
Output VSWR	2:1 typical
Detected video output	0.1 VDC
into 1K ohm load	
DC power	+15 VDC
	-

X 16 ACTIVE MULTIPLIER ASSEMBLIES

OPTIONS

- Input Power +5 to +20 dBm
- Detector Output

2.7 TO 2.945 GHz, MID OUTPUT LEVEL ELECTRICAL SPECIFICATIONS

Input frequency	0.085 – 0.092 GHz minimum		
Input power	-10 dBm minimum		
Input VSWR	2:1 typical		
Output frequency	2.7 – 2.945 GHz minimum		
Output power	+10 dBm minimum		
Output power flatness (at +25°C)	±1.5 dB maximum		
Output spurious rejection	-60 dBc to 8.8 GHz typical		
Output harmonic rejection	-50 dBc to 8.8 GHz typical		
Rejection of input harmonics	-65 dBc typical		
Output VSWR	1.5:1 typical		
DC power	+15 VDC		

X 32 ACTIVE MULTIPLIER ASSEMBLIES

PASSIVE MULTIPLIERS – OUTLINE DRAWINGS

GENERAL NOTES

- Dimensions are in inches [millimeters] Tolerance as follows:
 .xx = ±0.01 [.xx = ±0.25]
 .xxx = ±0.005 [.xxx = ±0.13]
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MX2B

Notes: Optional MX2C package available, see outline section.

Notes: Doubler may be readily used as is, or as a drop-in by removing the SMA connectors and mounting hardware as shown.

MX2C

ACTIVE MULTIPLIERS – OUTLINE DRAWINGS

GENERAL NOTES

- Dimensions are in inches [millimeters] Tolerance as follows:
 .xx = ±0.01 [.xx = ±0.25]
 .xxx = ±0.005 [.xxx = ±0.13]
- 2. Optional SMA, K or V type male connectors in either input, output or both.

MAX2B

Notes: Optional waveguide output available, please contact factory.

MAX2G

MAX2J

MAX4A

51

WARRANTY

- 1. MITEQ, Inc. warrants to the purchaser that each of its products, when shipped will be free from defects in material and workmanship and will perform in full accordance with applicable specifications. The limit of liability under this warranty is at MITEQ, Inc.'s option to repair or replace any product or part thereof which shall within: (a) three years of delivery for indoor equipment, (b) two years of delivery for outdoor equipment and (c) one year of delivery for integrated assemblies or equipment having RF output powers equal to or greater than +24 dBm, be returned by the purchaser to MITEQ, Inc., at 100 Davids Drive, Hauppauge, New York, 11788, and shall, as determined by examination by MITEQ, Inc., prove defective in material and/or workmanship. Warranty returns must first be authorized in writing by MITEQ, Inc. Disassembly of any MITEQ, Inc. product by anyone other than an authorized representative of MITEQ, Inc. voids this warranty in its entirety. MITEQ, Inc. reserves the right to make changes in any of its products without incurring any obligation to make the same changes on previously delivered products.
- Components and subsystems having been repaired by MITEQ, Inc. shall be warranted for <u>that</u> repair for ninety (90) days. For products that are still within the original warranty period as described above, the original warranty (if longer) will take precedence. For all SATCOM products, that portion of the system that is repaired, will be warrantied for one year.
- 3. As a condition to the warranties provided for herein, the Buyer will prepay the shipping charges for all products returned to MITEQ, Inc. for repair and MITEQ, Inc. will pay the return shipping with the exception of rack mountable hardware returned from outside the United States in which case the buyer will pay the shipping charges.
- 4. The buyer will pay the cost of inspecting and testing any goods returned under the warranty or otherwise which are found to meet the applicable specifications or which are not defective or not covered by the warranty.
- 5. Products sold by MITEQ, Inc. shall not be considered defective or non-conforming to the Buyers' order if they (a) satisfactorily fulfill the performance requirements that were (i) provided by the Buyer to MITEQ, Inc. or (ii) as published in the Sellers' product specification literature, or (b) or in accordance with any written or verbal agreement between the Buyer and MITEQ, Inc., or (c) are in accordance with samples approved by the Buyer. This warranty shall not apply to any products or parts thereof which have been subject to accident, negligence, alteration, abuse or misuse. MITEQ, Inc. makes no warranty whatsoever in respect to accessories or parts not supplied by it.
- 6. Limitations of Warranty, Damages and Liability

EXCEPT AS EXPRESSLY SET FORTH HEREIN, THERE ARE NO WARRANTIES, CONDITIONS, GUARANTEES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHER WARRANTIES, CONDITIONS, GUARANTEES OR REPRESENTATIONS, WHETHER EXPRESSED OR IMPLIED, IN LAW OR IN FACT, ORAL OR IN WRITING.

MITEQ, INC.'S AGGREGATE LIABILITY IN DAMAGES OR OTHERWISE SHALL NOT EXCEED THE PAYMENT, IF ANY, RECEIVED BY MITEQ, INC. FOR THE UNIT OF PRODUCT OR SERVICE FURNISHED OR TO BE FURNISHED, AS THE CASE MAY BE, WHICH IS THE SUBJECT OF CLAIM OR DISPUTE. IN NO EVENT SHALL MITEQ, INC. BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES, HOWSOEVER CAUSED.

7. All matters regarding this warranty shall be interpreted in accordance with the laws of the State of New York and any controversy that cannot be settled directly shall be settled by arbitration in New York, New York in accordance with the rules then prevailing of the American Arbitration Association, and judgement upon the award rendered may be entered in any court having jurisdiction thereof.

(M)MIT=G	MULTIPLIER DEPARTMENT
TEL.: (631) 439-9413 FAX: (631) 436-7430 E-MAIL: dkrautheimer@miteq.com	DATE
COMPANY	ADDRESS
TEL.	
FAX	

Please provide price, delivery and technical information for the following multipliers:

SPECIFICATION PARAMETER	REQUIREMENT 1	REQUIREMENT 2	TYPICAL VALUES PASSIVE ACTIVE	
Input frequency (GHz)				
Input power (dBm)			+10	+10
Input VSWR (maximum)			2.5:1	2.5:1
Input harmonics feeding multiplier (dBc)			-50	-50
Input harmonics rejection (gen. by multiplier) (dBc)			-15	-50 (with filter)
Output frequency (GHz)				
Output power (dBm, minimum)			-2	+10
Output power flatness at 25°C (dB)			±1 (octave)	±1.5
Output VSWR (maximum)			2.5:1	1.5:1
Output harmonics (dBc)			-	-15
Spurious rejection (nonharmonic related) (dB)			60	60
Conversion gain (dB)			-	Ο
Multiplier loss (dB)			12 (octave)	-
DC voltage, current			-	+15 VDC, 250 mA
Connectors (in/out)			SMA female/SMA female	
Operating temperature (°C)			0 to 50	0 to 50
Quantity				
Size (inches)				

Special requirements, such as output power variations over temperature and frequency, hermetic sealing, special testing/ screening, or specific operating environment may be listed below:

ADDITIONAL PRODUCTS FROM MITEQ

In addition to the products listed in this catalog, MITEQ manufactures a large variety of other microwave components, subsystems, and systems. A short synopsis of these products is presented below.

<u>AMPLIFIERS -</u> GaAS FET DESIGNS TO 60 GHz

Low-noise amplifiers

Moderate bandwidth (10% BW), with noise figures from 0.35 dB at L-band to 2.5 dB at 40 GHz and 6 dB at 60 GHz Classical octave bands, with noise figures from 0.4 dB in the 1–2 GHz band and 2.5 dB in the 20–40 GHz band. Multioctave and ultra-wideband designs, with noise figures from 1 dB at 2 GHz to 3 dB at 40 GHz

- Medium power amplifiers Moderate to ultra-wideband designs with 33 dBm at 18 GHz, 18 dBm at 40 GHz
- Power amplifiers Moderate band to octave designs with output power to 10 watts (linear)

OSCILLATORS/FREQUENCY SOURCES

- Crystal oscillators to 195 MHz, single or multiple crystal, moderate to high stability
- Crystal oscillator/multipliers to 40 GHz
- Voltage-tuned oscillators to 4 GHz
- Cavity-tuned oscillators to 6 GHz
- Coaxial resonator oscillators to 3.2 GHz
- Dielectric resonator stabilized oscillators (DROs) from 3–20 GHz
- Phase-locked oscillators, combine crystalcontrolled oscillators with the above-listed free-running sources
- Frequency synthesizers to 50 GHz, singleloop or multiloop, with fine frequency resolution and low phase noise
- Frequency doublers to 60 GHz; passive, active with unity gain
- Frequency triplers and quadruplers, custom designs to 50 GHz

SIGNAL PROCESSING

RF AND MICROWAVE SIGNAL PROCESSING COMPONENTS (MIXER AND MIXER-RELATED PRODUCTS TO 50 GHz)

- Single-, double-, and triple-balanced mixers Phase/amplitude matched sets
- Low spurious level mixer/preamps
- Multioctave image rejection mixer/IF amplifiers
- Single sideband and biphase modulators
- Integrated multifunction frequency conversion
 assemblies
- Low harmonic upconverter/modulators

RF AND MICROWAVE

SIGNAL PROCESSING COMPONENTS (CONT.)

- Low 1/f noise phase detectors
- Ultra-high IP³ level mixers
- Low-noise front ends
- Solid state switches, one-to-six throw above 18 GHz
- Solid state attenuators

 1–18 GHz in octave bands, current and voltage controlled linear models, analog and digitally controlled
- Switch matrixes
- Switch filter banks
- Custom integrated microwave assembles including: block frequency converters, radar receiver front ends, and modulator subsystems to complete integrated receivers

IF SIGNAL PROCESSING COMPONENTS TO 3 GHz

- Voltage-controlled amplifiers
- Automatic gain-controlled (AGC) amplifiers
- Constant phase limiting amplifiers
- Discriminators
- Logarithmic amplifiers
- Extended range DLVA (to 18 GHz)
- I/Q processors

VIDEO SIGNAL PROCESSING COMPONENTS

- DC-coupled amplifiers to 2 GHz
- Audio distribution amplifiers
- Video distribution amplifiers

SATELLITE COMMUNICATION PRODUCTS

- Synthesized converters, 1.0 kHz and 125 kHz frequency step size
- Crystal-controlled converters
- Frequency translators
- 1:1 and 1:N redundant switchover systems
- Video exciters
- 1:1 and 1:2 redundant amplifier systems
- 70 MHz and 140 MHz variable IF delay and amplitude slope equalizers
- INMARSAT L- and C-band converters, pilot generators/receivers, translators
- Uplink power control units
- Receiver subsystems
- Integrated modules
- FM modulators
- FM demodulators
- Pressurized (weatherproof) and weather resistant enclosures
- Custom designed products

FREQUENCY MULTIPLIERS

ADDITIONAL FREQUENCY SOURCE PRODUCTS

FREE-RUNNING AND PHASE-LOCKED VOLTAGE-CONTROLLED OSCILLATORS

- Cavity and Coaxial Resonator Designs Fundamental to 4 GHz Multiplied to 40 GHz
- Crystal Oscillators to 195 MHz, Single or Multiple Crystal, Moderate to High Stability
- Cavity-Tuned to 6 GHz
- Coaxial Resonator to 3.2 GHz
- Octave Band L-C VCOs

FREE-RUNNING AND PHASE-LOCKED DIELECTRIC RESONATOR OSCILLATORS

- Fundamental Bipolar Based Designs to 12 GHz
- FET Designs to 25 GHz
- Coaxial and Microstrip Packages

FREQUENCY SYNTHESIZERS

- Phase-Locked Loop, Communication Band Synthesizers
- Single-Loop Fast Acquisition Synthesizers
- Octave Band YIG-Based Synthesizers

For additional information and technical assistance, please contact Dave Krautheimer at (631) 439-9413.

